TiSAn: Estimating Tissue Specific Effects of Coding and Non-coding Variants

نویسندگان

  • Kévin Vervier
  • Jacob J Michaelson
چکیده

Measures of general deleteriousness, like CADD or PolyPhen, have become indispensable tools in the interpretation of genetic variants. However, these measures say little about where in the organism these deleterious effects will be most apparent. An additional, complementary measure is needed to link deleterious variants (as determined by e.g., CADD) to tissues in which their effect will be most meaningful. Here, we introduce TiSAn (Tissue Specific Annotation), a tool that predicts how related a genomic position is to a given tissue (http://github.com/kevinVervier/TiSAn). TiSAn uses machine learning on genome-scale, tissuespecific data to discriminate variants relevant to a tissue from those having no bearing on the development or function of that tissue. Predictions are then made genome-wide, and these scores can then be used to contextualize and filter variants of interest in whole genome sequencing or genome wide association studies (GWAS). We demonstrate the accuracy and versatility of TiSAn by introducing predictive models for human heart and human brain, and detecting tissue-relevant variations in large cohorts for autism spectrum disorder (TiSAn-brain) and coronary artery disease (TiSAn-heart). We find that TiSAn is better able to prioritize genetic variants according to their tissue-specific action than the current state of the art method, GenoSkyLine. . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/141408 doi: bioRxiv preprint first posted online May. 24, 2017;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient expression of coding and non-coding regions of PVY confer resistance to virus infection

One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...

متن کامل

Long non-coding RNAs and their significance in human diseases

Protein-coding genes account for only a small fraction of the human genome and most of the genomic sequences are transcriptionally silent, but recent observations indicate significant functional elements, including non-coding protein transcripts in the human genome. Long non-coding RNAs (lncRNAs) have been defined as transcripts of >200 nucleotides without protein-coding capacity that perform t...

متن کامل

SNHG6 203 and SNHG6 201 Transcripts Can be Used as Contributory Factors for a Well-Timed Prognosis and Diagnosis of Colorectal Cancer

Background:Long non-coding RNAs, as a big part of non-coding RNAs, are considered functionally more than past. These transcripts could be involved in carcinogenesis. SNHG6, as a long non-coding RNA, has been reported to be expressed more in colorectal cancer tissues than non-cancerous ones.  Colorectal cancer as a malignancy needs fast prognostic and diagnostic methods for well...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

In-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene

Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017